
LETTERS

The architecture of mutualistic networks minimizes
competition and increases biodiversity
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The main theories of biodiversity either neglect species interac-
tions1,2 or assume that species interact randomlywith each other3,4.
However, recent empirical work has revealed that ecological
networks are highly structured5–7, and the lack of a theory that
takes into account the structure of interactions precludes further
assessment of the implications of such network patterns for bio-
diversity. Here we use a combination of analytical and empirical
approaches to quantify the influence of network architecture on
the number of coexisting species. As a case study we consider
mutualistic networks between plants and their animal pollinators
or seed dispersers5,8–11. These networks have been found to be
highly nested5, with the more specialist species interacting only
with proper subsets of the species that interact with the more
generalist. We show that nestedness reduces effective interspecific
competition and enhances the number of coexisting species.
Furthermore, we show that a nested network will naturally emerge
if new species are more likely to enter the community where they
have minimal competitive load. Nested networks seem to occur in
many biological and social contexts12–14, suggesting that our
results are relevant in a wide range of fields.

A long-held tenet in ecology is that the structure of an ecological
network can largely affect its dynamics3,6,7,15,16. Recent work has
unravelled the structure of plant–animal mutualistic networks5,8–11,
but little is known about the implications of these network patterns
for the persistence of biodiversity. Previous theory has analysed the
dynamics of mutualistic communities without considering their
structure3,17–20. More recently, ecologists have started numerically
to explore the robustness of mutualistic networks10,21–25, but no study

has yet determined how the size of the network depends on its
structure. However, understanding the factors determining the num-
ber of coexisting species is possibly themost fundamental problem in
ecology and conservation biology. Here we analytically quantify
whether and to what extent the architecture of mutualistic networks
enhances the number of species that can stably coexist in a commu-
nity (Fig. 1). Also, we explore the emergence of this network archi-
tecture through the assembly process. Our analytical approach
provides general, insightful results about the equilibrium behaviour
instead of simulating the dynamics of our system before such an
equilibrium (Supplementary Fig. 1).

We must first derive a baseline biodiversity that will occur in the
absence ofmutualistic interactions.We therefore begin by considering
previous theory that predicts the number of coexisting species when
there are only competitive interactions26,27. Nextwe build a generalized
model ofmutualisms inwhich species in the same group competewith
each other and interact mutualistically with species in the other group
(Methods). For direct competition for resources without mutualism,
previousworkhas shown that the largest eigenvalueof the competition
matrix limits themaximumbiodiversity that the system can attain26,27.
This predicted maximum number of plant species (similar for
animals) can be expressed as

!SS(P)~
1{~rr(P)

~rr(P)
ð1Þ

where ~rr(P) is the normalized effective interspecific competition para-
meter, which can be computed from the main eigenvalue, l1, of the
normalized competition matrix (Supplementary Methods) as
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Figure 1 | The structure of mutualistic networks determines the number of
coexisting species. Each panel represents a plant–animal network with
different structures: a, fully connected; b, nested; c, compartmentalized.
Two plants and their respective interactions are highlighted. They compete
for resources such as nutrients (red arrow), but also have indirect

interactionsmediated by their common pollinators (blue arrow), whichmay
change in sign andmagnitude (indicated by arrow line style). As the number
of shared pollinators is higher, positive effects outweigh negative ones, and
the theory predicts a higher number of coexisting species as indicated by the
size of the matrices.
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~rr(P)~
l1{1

S(P){1
ð2Þ

Here S(P) is the observed number of plant species, which gives the
dimensions of the interaction matrices. Qualitatively, the larger is
~rr(P), the smaller is the number of species that can stably coexist in a
purely competitive system. To obtain explicit analytical formulae, we
will henceforth consider direct competition ofmean-field type assum-
ing that all species within a set compete with each other with identical
intensities (this can be relaxed in numerical simulations; Supple-
mentaryMethods). In this case, the quantity computed using equation
(2) is equal to the direct competition parameter, r(P).

Now thatwehave set up the baseline limit to the number of coexisting
species defined by equation (1), we can incorporatemutualism between
plants and animals and quantify the new limit to biodiversity. It is still
possible to derive an effective competitionmatrix that includes the effect
of mutualism. The maximum eigenvalue of this matrix limits biodiver-
sity through equations (1) and (2).We first consider the fully connected
mutualisticnetwork inwhichall plants interactwithall animals (Fig. 1a).
Thenormalized effective interspecific competition,~rr(P)mut, is related to the
direct competition without mutualism as follows, where a(P) is a para-
meter (Supplementary Informationequation (7)) that is proportional to
the strength of mutualistic interactions:

~rr(P)mut~
r(P){a(P)

1{a(P)
ð3Þ

Stable solutions exist fora(P),r(P).We can see fromequation (3) that

~rr(P)mut is smaller than r(P). This means that mutualism always reduces
the effective interspecific competition in a fully connected plant–
animal network. The predicted maximum number of plant species

in thepresence ofmutualism,!SS(P)mut, becomes (SupplementaryMethods)

!SS(P)mut~
1{~rr(P)mut

~rr(P)mut

~
!SS(P)

1{a(P)=r(P)
ð4Þ

which is strictly greater than !SS(P), proving that fully connected mutua-
listic networks increase thenumberof coexisting species by reducing the
effective interspecific competition.

Having quantified the increase in biodiversity due to mutualism in
the fully connected case, we proceed by assessing how this mutualistic
effect is shapedby the structure ofmutualistic networks (Fig. 1b, c).We
will repeat the above arguments relaxing the assumption that plant and
animal species interact with all species in the other group.Whereas the
effective competitionmatrix in the case of mean-fieldmutualism con-
tained terms describing an average identical effect of one species on
another, now the elements of the effective competitionmatrix,C(P)

ij , are
different andhave to bewritten explicitly as (SupplementaryMethods)

C(P)
ij ~dijz 1

!SS(P)
zR 1

S(A)z!SS(A)
n(P)i n(P)j {n(P)ij

! "
ð5Þ

where dij is theKronecker delta function (1 if i5 j, 0 otherwise),R is the
mutualism-to-competition ratio (Supplementary Information equa-

tion (23)),n(P)i is the number of interactionsof plant species i andn(P)ij is

the number of shared interactions between species i and j. Importantly,
the right-hand side of equation (5) decreases with the nestedness of the
mutualistic network (as defined in Methods). As a consequence, by
inspection nestedness reduces the effective interspecific competition
for a given distribution of number of interactions across plant species
and fixed parameters. Because the predicted maximum number of
plant species (equation (4)) increases with decreasing effective com-
petition, the model predicts that the more nested is the matrix, the
higher is the maximum biodiversity.

To explicitly quantify the increase in biodiversity (from the base-
line of an exclusively competitive system) due to the nested architec-
ture of mutualistic networks, we computed the derivative of the
predicted maximum number of plant species (equation (4)) with
respect to the mutualism-to-competition ratio:

1

!SS(P)mut

L!SS(P)mut

LR

#####
R~0

~ 1z
1
!SS(P)

! "
hn(P)i !SS(P) ĝg(P){

hn(P)i
S(A)z!SS(A)

! "$

{(1{ĝg(P))z
h(n(P))2i{hn(P)i2

hn(P)i(S(A)z!SS(A))

S(P)z!SS(P)

S(P){1

# ð6Þ

Here hn(P)i~
X

i
n(P)i =S(P) and h(n(P))2i~

X
i
(n(P)i )2=S(P) are the

mean andmean-square number of mutualistic interactions per plant
species, respectively. This derivative increases with the parameter

ĝg(P)~
X

i=j
n(P)ij

.
(S(P){1)

X
k
n(P)k

% &
, which is highly correlated

with the measure of nestedness defined in Methods. As seen above,
mutualism of the fully connected type always increases the number of
coexisting species, setting a maximum limit to biodiversity (fully
connected networks have the maximum numbers of absolute and
shared mutualistic interactions; Fig. 1a). Structured networks,
however, may increase the effective competition and reduce bio-
diversity if there are not enough shared interactions (that is, for
low nestedness; Fig. 1c), or if direct competition is strong so that
the predicted maximum numbers of species in the absence of mutu-
alism, !SS(A) and !SS(P), are small. Therefore, the architecture of mutua-
listic networks highly conditions the sign andmagnitude of the effect
of mutualism on the number of coexisting species. Nestedness pro-
vides the maximum number of species given a certain number of
interactions (Fig. 1b). The next question is to unravel how nested
mutualistic networks arise in the first place. In Supplementary
Methods, we analytically show that a new species entering the com-
munity will experience the lowest competitive load, and will there-
fore be most likely to be incorporated into the community, if it
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Figure 2 | The nested architecture of real mutualistic networks increases
their biodiversity. a, The increase in the predicted maximum biodiversity
(sum of plant and animal species) of a mutualistic network as a function of
its value of nestedness. Each symbol represents a real network.
b, Relationship between the increase in the predictedmaximumbiodiversity
for real networks versus randomizations. All significantly nested networks
(filled symbols) show a higher increase in biodiversity. The increase in
biodiversity is calculated as a numerical approximation to equation (6). The
observed numbers of species (S(P) and S(A)) are given in Supplementary
Table 1. Other parameters are !SS(P)~!SS(A)~50 and R5 0.005.
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interacts with the most generalist species. This naturally leads to a
nested network.

To illustrate the predicted effect of network architecture on bio-
diversity, we incorporate the structure of each one of 56 real mutua-
listic networks (Supplementary Table 1) intoour analytical expression
(equation (5)). In Fig. 2a, we plot the increase in biodiversity in rela-
tion to thebaseline limitwithoutmutualism (equation (6)) against the
level of nestedness. As can be seen, real communities that are more
nested show higher increases in biodiversity. It is possible, however,
that this increase is mediated by a covariant variable such as the
number of species or interactions. To rule this out, we use an alterna-
tive way of exploring the role of network structure that keeps constant
all variables but nestedness. Figure 2b shows the comparative increase
in biodiversity for both real and randomized networks (Methods). In
the bulk of communities (45 of 56,P5 2.03 1026, binomial test), the
real architecture induces a higher increase in biodiversity than the
randomization. More importantly, all networks that are significantly
nested (Methods; filled symbols in Fig. 2b) have a greater increase in
biodiversity than do their randomizations. Nestedness may be corre-
lated with other properties of network structure such as degree distri-
bution or disassortativity, and the overall contribution to biodiversity
increasemay therefore be a composite of all these properties that shape
the architecture of mutualistic networks.

Our analytical framework can complement previous non-interacting
or mean-field approaches to ecology1,2, by quantifying the importance
of network structure for biodiversity. Ideally, this could provide an
assessment of the relative contributions of different mechanisms to
biodiversity maintenance, a critical task at present in the face of global
change. A variety of systems can be described as similar cooperative
networks12–14. The dynamics of such systems can be captured by
appropriate versions of the mutualistic model studied here.
Therefore, our analysis can be extended to address questions such as
to what extent systemic risk depends on the structure of the financial
systems13, how the optimum number of companies is determined by
the architecture of contractor–manufacturer networks14, and to
what degree the structure of social networks favours the evolution of
cooperation28.

METHODS SUMMARY
We used a mutualistic model defined as a system of differential equations. It
describes the dynamics of a community of nplant species andm animal species as
a function of their intrinsic growth rates, interspecific competition, and mutua-
listic effects represented as nonlinear, saturating functional responses (Holling
type II). We controlled the structure of the plant–animal mutualistic network
and were able to analytically solve the model for several network architectures.
We analytically estimated nestedness by averaging the number of shared inter-

actions between two given plants relative to their respective numbers of inter-
actions. In a completely nested matrix, the sets of interactions overlap, therefore
maximizing the above quantity. This analyticalmeasure of nestedness allowed us
to directly relate nestedness to the effective competitionmatrix, and to write our
analytical solutions as a function of nestedness.
We assessed the significance of nestedness by estimating the probability, p,

that a randomization of the network is equally or more nested than the real
matrix5. Our randomizations assumed that the probability of an interaction
was proportional to the generalization level of both the plant and the animal
species5.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
The mutualistic model. The dynamical equation for the population of plant
species i is

dN (P)
i

dt
~a(P)i N (P)

i {
X

j[P

b(P)ij N (P)
i N (P)

j

z
X

k[A

c(P)ik N (P)
i N (A)

k

1zh(P)
P

l[A c
(P)
il N (A)

l

ð7Þ

where upper indices (P) and (A) denote ‘plant’ and ‘animal’, respectively, Ni

represents the number of individuals of species i and P and A indicate the sets
of plant and animal species, respectively. The parameter ai represents the intrinsic
growth rate in the absence ofmutualism, andbij represents the direct interspecific
competition for resources between species i and j (for example light and nutrients
in the case of plants, and breeding sites in the case of animals). The last term
describes the mutualistic interaction, through nonlinear functional responses
representing a saturation of consumers as the resources increase. The parameter
cik defines the per capita mutualistic strength of animal k on plant i, and h can be
interpreted as a handling time. The equations for animal populations can be
written in a symmetric form by interchanging the indices (A) and (P).
Equation (7) incorporates all elements recently adduced as necessary ingredients
for a realistic model of facultativemutualism17,29, plus additional ones such as the
explicit interspecific competition term. It generalizes previousmutualisticmodels
and allows the reconciliation of previous results on particular cases
(Supplementary Methods).
Fixed points of the model.We can analytically obtain the fixed points of model
(7) through some algebraic transformations and Taylor expansions (see
Supplementary Methods for the full analytical development). There are two
different solutions. The first is characterized by small equilibrium biomasses,
N= 1/hc. Because the mutualistic strength, c, has to remain small for this to be
stable, we call this regime weak mutualism. A second type of fixed point, which
we refer to as strong mutualism, corresponds to equilibrium biomasses, N, of
order 1/hc. As soon as the weak-mutualism fixed point becomes unstable, the

strong-mutualism fixed point becomes stable. Because mutualistic networks are
built upon weak dependences10, the weak-mutualism solution seems the most
plausible; it is the one considered in themain text, whereas the strong-mutualism
regime is described in Supplementary Methods.
The weak-mutualism fixed-point equations can be written in the form of a

linear system,
X

j
C(P)
ij N (P)

j ~p(P)i , where p(P)i are the entries of the effective
productivity vector (Supplementary Methods). We show in Supplementary
Methods that the necessary and sufficient condition for dynamic stability in
the weak-mutualism regime is that all equilibrium biomasses are positive and
the effective competition matrix is positive definite (that is, all eigenvalues are
real and positive).
Measuringnestedness.The level of nestedness of themutualisticmatrix is usually
estimated by means of appropriate software5,12,30. Here we introduced an explicit
definition of nestedness that makes the calculationmore straightforward and had
the advantage of being related to the form of the effective competitionmatrix. For
plant species, it reads

g(P)~

P
ivj n

(P)
ijP

ivj min (n(P)i ,n(P)j )

Here min(n(P)i , n(P)j ) refers to the smaller of the two values n(P)i and n(P)j . A sym-

metric definition holds for animal species. This nestedness index ranges from zero
to one, and is highly correlated with previous measures of nestedness.
To assess the significance of nestedness in a real community, we used a popu-
lation of randomizations of the real community. Our nullmodel randomized the
interaction matrix probabilistically maintaining the generalization level of both
the plant and the animal species. Specifically, the probability of an interaction
between plant i and animal j, pij, is given by the following expression5, where pi
and qj are the fractions of occupied cells in row i and column j, respectively:

pij~
pizqj

2

As a statistic indicating significance, we estimated the probability, p, that a
randomization was equally or more nested than the real matrix5.
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for competitive load. They clearly show that 
nested mutualism reduces overall competition 
for a given number of cooperative interactions, 
and so has a potential stabilizing effect. 

Thus, whereas competition normally 
limits the number of species that can co exist 
(as tough competitive markets often tend 
towards monopoly), the nested cooperative 
models studied here reduce competition and 
allow the system to support more species, or 
higher biodiversity. This model prediction is 
supported by data from 56 plant–animal 
mutualistic networks, providing evidence that 
real cooperative networks with this structure 
attain a larger size than those that are relatively 
less nested.

Nestedness is not an isolated property of 
plant–animal communities, however, but 
appears in various social contexts, including 
the organization of the New York garment 
industry4 and as disassortativity in the topology 
of the Fedwire network3. Indeed, it is possible 
that the appearance of similar topology among 
diverse cooperative networks may be a result of 
simple shared assembly rules5.  

A common theme among various network 
assembly rules5–7 in ecology (for food webs, for 
instance) is the idea of growing the network 
along paths of least resistance, with simple con-
straints that minimize competition. This is the 
situation in which species join the network in 
order of increasing specialization with minimal 
competitive resistance7 (Fig. 2). As described by 
Bastolla et al.1, when a specialist species joins 
the community by interacting with a generalist 
species, overall competitive load is decreased. 
This results in a self-reinforcing nested net-
work, in which existing generalist species gain 
more connections as specialist species enter the 
system: reduced competition, in turn, attracts 
more specialists.

In the case of the New York garment indus-
try4, where cooperation occurs between 
two classes of companies — contractors and 
manufacturers — the establishment of a new 
small contractor (that is, a specialist animal) 
is facilitated if that company cooperates with 
a large, well-established manufacturer (a gen-
eralist plant). An analogous case may hold for 
the payment networks of banks3, where the 
network topology is disassortative. Here, dis-
assortativity may arise naturally when banks 
seek relationships with each other that are the 
most mutually beneficial: for example, small 
banks may interact with large banks for secu-
rity, lower liquidity risk and lower servicing 
costs, and large banks may interact preferen-
tially with small banks in part because they can 
extract a higher premium for services and can 
in principle accommodate more risk. Simple 
incentive rules can give rise to self-reinforcing 
disassortativity.

However, the same hierarchical structure 
that promotes biodiversity in plant–animal 
mutualistic networks may also increase the risk 

COMPLEX SYSTEMS 

Cooperative network dynamics 
George Sugihara and Hao Ye

Nested, or hierarchically arranged, mutualisms allow ecosystems to 
support more species than they otherwise would. But in this and other 
contexts, the growth of such networks could carry a heavy price.    

On page 1018 of this issue, Bascompte and 
colleagues (Bastolla et al.)1 describe how 
they have followed up earlier studies2 of the 
mutuali stic networks of plants and their animal 
pollinators. This new investigation is an 
intriguing enquiry into whether the particular 
topology of cooperative interactions accommo-
dates greater biodiversity (network size), and it 
has potential applications beyond ecology to 
the dynamics of social and financial systems. 

In the ecological networks under considera-
tion, plants and animals compete for resources 
within their respective groups. But they may 
obtain mutual pay-offs across groups, in 
the form of pollination services and nectar 
rewards, that can offset the dynamic limits 
to system size determined by competition. 
These ‘dual category’, or bipartite, coopera-
tive networks exhibit a common architecture 
called nestedness2, in which relative specialists 
— those species with few cooperative links —  
interact only with subsets of species having 
greater numbers of cooperative links. This 
somewhat abstract hierarchical feature gives 
rise to network ‘disassortativity’2,3, in which 
nodes with few connections (specialists) tend 
to be connected to nodes with many connec-
tions (generalists), and vice versa. (Strictly 
speaking, nestedness is restricted to bipartite 
networks, and disassortativity is a more general 
property of node connectivity.) Either way, this 
gives the network an overall appearance similar 
to that of the Fedwire network operated by the 
US Federal Reserve System for interbank pay-
ment transfers3. This network has a dense core 
of well-connected large institutions (general-
ists) fringed by a periphery of smaller banks 
(specialists).

How does nested mutualism affect the way 
systems operate? In a fully connected network 
in which all plants cooperate with all animals, 
mutualism reduces the effective competition 
within each bipartite class: within plants and 

within animals. However, in situations in which 
not all mutualistic interactions are present, 
some cooperative links will serve to decrease 
competition (Fig. 1a), whereas others can actu-
ally increase it (Fig. 1b). To clarify the role of 
nestedness in reducing the effects of competi-
tion, Bastolla and colleagues1 apply a ‘soft mean 

Figure 1 | Nested mutualism reduces 
competition. a, A nested cooperative network1, 
in which both the specialist plant P1 and the 
generalist plant P2 interact with the generalist 
animal A1. Because both plants share a 
mutualism with the generalist animal A1, the 
competition between them is reduced. Similarly, 
competition between both animals is decreased 
by mutualism with generalist plant P2. b, In a 
non-nested network, the specialist animal A2 
does not interact cooperatively with a subset 
of the species with which the generalist animal 
A1 interacts. So competition between animals 
A1 and A2 is exacerbated by mutualism with 
competing plants. The same principles apply 
to competition between P1 and P3 and between 
P2 and P3 (amplified by their mutualism with 
competing animals).
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of large-scale failures in cooperative networks8. 
Mutualism facilitates greater biodiversity. But it 
also creates the potential for many contingent 
species to go extinct, particularly if large, well-
connected generalists (for example, certain 
large banks) disappear. 

Moreover, as reported by Bastolla et al.1, a 
strong mutualistic interaction between two 
species (excessively favourable selective terms) 
can move the system into a strong mutualis-
tic regime; this will destabilize other weakly 
mutualistic species groups whose interaction 
strength falls below some threshold. Over time, 
only the strong cooperators survive, and the 
weakly cooperating species groups go extinct. 
This stylized behaviour of simple mutualistic 
networks possibly applies to other domains, in 
which strong cooperation between two agents 
may cause the demise of all other agents — or 
where, in less-stylized cases, uneven coopera-
tive subsidy or advantage in global networks 
can be dangerous unless the mutually bene-
ficial effects propagate more or less evenly 
throughout the network. 

As a specific speculative example, consider 
the interdependence of the Internet auction 

site eBay and the payment system PayPal. 
PayPal was the dominant method of payment 
for eBay auctions when it was bought by eBay in 
2002, strengthening cooperative links between 
the two companies. Insofar as this simplified 
model applies, this duopolistic partnership 
would have encouraged the demise of alter-
native competing payment systems, such as 
eBay’s Billpoint (phased out after the purchase 
of PayPal), Citibank’s c2it (closed in 2003) and 
Yahoo!’s PayDirect (closed in 2004). 

Whether Bastolla and colleagues’ model1 of 
structured cooperation performs the same role 
in other domains is intriguing but unclear. In 
particular, the extent to which the topology of 
cooperative linkages in payment networks — 
or more importantly, in networks of balance 
sheets — may increase systemic risk in the 
financial sector remains an open question9. 
Tackling such questions will no doubt require 

mutualistic cooperation between researchers 
linking different competitive fields. ■
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NEUROSCIENCE 

Optical control of reward
David E. Moorman and Gary Aston-Jones

Is it wishful thinking that the behaviour of an organism as complex as a mouse 
might be controlled by modulating its intracellular signalling with light? 
No: this is just what researchers have achieved with an elegant technique. 

Ever since the Italian physician Luigi Galvani 
discovered that frogs’ muscles twitch when 
stimulated electrically, the integral role of 
electricity in the functioning of the nervous 
system has seemed clear. But there is also a 
growing appreciation that intracellular signal-
ling pathways — which can interact with the 
extracellular environment through G proteins 
and G-protein-coupled receptors (GPCRs) 
— play an essential part in the processing of 
information by neurons. Deisseroth and col-
leagues1 (Airan et al., page 1025 of this issue) 
now describe a powerful technique that allows 
intracellular signalling pathways to be control-
led through the activation of GPCRs by light. 
Intriguingly, by modulating specific signalling 
cascades in this way, the authors can control 
behaviour in mice. 

Deisseroth and colleagues2 had previously 
shown that naturally occurring light-activated 
ion channels, such as channelrhodopsin-2 
(ChR2) and halorhodopsin, could be inte-
grated into neuronal cell membranes to drive 
the respective activation or inhibition of 
electrical impulses using light. By means of 
this and other similar techniques3,4, neuronal 
impulses can be regulated with unprecedented 
temporal, spatial and cell-type specificity. In 
the latest development, Airan et al.1 have cre-
ated chimaeric GPCR molecules that they call 
optoXRs. The extracellular and transmem-
brane portions of optoXRs (opsin) consist of 
the light-activated rhodopsin protein, but their 

intracellular components are those of specific 
GPCRs. The authors focused on two main 
receptors for the neurotransmitters adrenaline 
and noradrenaline: the β2 receptor, which cou-
ples to Gs proteins, and the α1a receptor, which 
couples to Gq proteins. As these two classes of 
G protein activate signalling pathways that 
are mediated by different effector molecules5, 
the authors could control a wide range of 
intracellular signalling pathways. 

Airan et al. first expressed optoXRs in cell 
lines to test the molecules’ basic functional-
ity. Depending on the optoXR expressed, they 
observed a robust light-driven increase in the 
levels of the cellular signalling molecules cal-
cium, cAMP and Ins(1,4,5)P3 — effects that are 
associated with activation of the corresponding 
native GPCRs. What’s more, the levels of increase 
were similar to those that occurred after activa-
tion of the native receptors, demonstrating that 
optoXRs can potentially regulate intracellular 
signalling in a physiologically relevant yet 
precise manner via specific G proteins. 

The authors next investigated light activation 
of optoXRs in brain slices containing neurons 
from the nucleus accumbens region. They report 
an increase in the levels of phosphorylated 
CREB, a protein that functions downstream of 
Gs- and Gq-mediated pathways. So it seems that 
even downstream components of these pathways 
can be activated by light without the need for 
additional cofactors, a requirement that would 
have limited this technology’s applicability 
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Figure 2 | Minimal assembly rules can explain 
structure. a, An assembly rule that minimizes 
competition by adding specialists along paths 
of least resistance1; solid lines denote existing 
connections. The left-hand sequence minimizes 
competition by adding species 4 to a single 
guild of competing species (1 and 3). Because 
it is easier for species 4 to join the network as 
a specialist, this is a path of least resistance. 
In the right-hand ‘forbidden’ sequence, the 
new species (3) must compete with two guilds 
of species — (4 and 1), (2 and 1) — and is not 
entering as a specialist. b, Another common 
minimal assembly constraint is a natural 
ordering in the resource set7, as might result 
from evolution6. The nodes are resources used by 
each species (here, seed sizes), and each species 
is represented as a line joining two resource 
classes. Adding a species that eats small and large 
seeds, but ignores middle-sized ones, violates the 
niche ordering (a common minimal assembly 
constraint)1,5–7. (Graphic modified from ref. 7.)
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