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The architecture of mutualistic networks minimizes
competition and increases biodiversity

Ugo Bastolla', Miguel A. Fortuna?, Alberto Pascual-Garcia', Antonio Ferrera®, Bartolo Luque® & Jordi Bascompte®

The main theories of biodiversity either neglect species interac-
tions"? or assume that species interact randomly with each other**.
However, recent empirical work has revealed that ecological
networks are highly structured®”, and the lack of a theory that
takes into account the structure of interactions precludes further
assessment of the implications of such network patterns for bio-
diversity. Here we use a combination of analytical and empirical
approaches to quantify the influence of network architecture on
the number of coexisting species. As a case study we consider
mutualistic networks between plants and their animal pollinators
or seed dispersers>®''. These networks have been found to be
highly nested’, with the more specialist species interacting only
with proper subsets of the species that interact with the more
generalist. We show that nestedness reduces effective interspecific
competition and enhances the number of coexisting species.
Furthermore, we show that a nested network will naturally emerge
if new species are more likely to enter the community where they
have minimal competitive load. Nested networks seem to occur in
many biological and social contexts>™*, suggesting that our
results are relevant in a wide range of fields.

A long-held tenet in ecology is that the structure of an ecological
network can largely affect its dynamics®®”'>'°. Recent work has
unravelled the structure of plant-animal mutualistic networks>* ™",
but little is known about the implications of these network patterns
for the persistence of biodiversity. Previous theory has analysed the
dynamics of mutualistic communities without considering their
structure™'’"*. More recently, ecologists have started numerically
to explore the robustness of mutualistic networks'>*'~*, but no study
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has yet determined how the size of the network depends on its
structure. However, understanding the factors determining the num-
ber of coexisting species is possibly the most fundamental problem in
ecology and conservation biology. Here we analytically quantify
whether and to what extent the architecture of mutualistic networks
enhances the number of species that can stably coexist in a commu-
nity (Fig. 1). Also, we explore the emergence of this network archi-
tecture through the assembly process. Our analytical approach
provides general, insightful results about the equilibrium behaviour
instead of simulating the dynamics of our system before such an
equilibrium (Supplementary Fig. 1).

We must first derive a baseline biodiversity that will occur in the
absence of mutualistic interactions. We therefore begin by considering
previous theory that predicts the number of coexisting species when
there are only competitive interactions*>*”. Next we build a generalized
model of mutualisms in which species in the same group compete with
each other and interact mutualistically with species in the other group
(Methods). For direct competition for resources without mutualism,
previous work has shown that the largest eigenvalue of the competition
matrix limits the maximum biodiversity that the system can attain®®*’.
This predicted maximum number of plant species (similar for
animals) can be expressed as

1—p®
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where p® is the normalized effective interspecific competition para-
meter, which can be computed from the main eigenvalue, 4,, of the
normalized competition matrix (Supplementary Methods) as
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Figure 1| The structure of mutualistic networks determines the number of
coexisting species. Each panel represents a plant—animal network with
different structures: a, fully connected; b, nested; ¢, compartmentalized.
Two plants and their respective interactions are highlighted. They compete
for resources such as nutrients (red arrow), but also have indirect

interactions mediated by their common pollinators (blue arrow), which may
change in sign and magnitude (indicated by arrow line style). As the number
of shared pollinators is higher, positive effects outweigh negative ones, and
the theory predicts a higher number of coexisting species as indicated by the
size of the matrices.
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Here S is the observed number of plant species, which gives the
dimensions of the interaction matrices. Qualitatively, the larger is
p), the smaller is the number of species that can stably coexist in a
purely competitive system. To obtain explicit analytical formulae, we
will henceforth consider direct competition of mean-field type assum-
ing that all species within a set compete with each other with identical
intensities (this can be relaxed in numerical simulations; Supple-
mentary Methods). In this case, the quantity computed using equation
(2) is equal to the direct competition parameter, p

Now that we have set up the baseline limit to the number of coexisting
species defined by equation (1), we can incorporate mutualism between
plants and animals and quantify the new limit to biodiversity. It is still
possible to derive an effective competition matrix that includes the effect
of mutualism. The maximum eigenvalue of this matrix limits biodiver-
sity through equations (1) and (2). We first consider the fully connected
mutualistic network in which all plants interact with all animals (Fig. 1a).
The normalized effective interspecific competition, pnlzut, isrelated to the
direct competition without mutualism as follows, where a'* is a para-
meter (Supplementary Information equation (7)) that is proportional to
the strength of mutualistic interactions:

~(P) _ p(P) - a(P) (3)
pmut_ l—a(P)

Stable solutions exist for '™ < p(P). We can see from equation (3) that
i)ﬁﬁfn is smaller than p'*. This means that mutualism always reduces
the effective interspecific competition in a fully connected plant—

animal network. The predicted maximum number of plant species
in the presence of mutualism, 3,(]1:3“, becomes (Supplementary Methods)

(P _
mut = T _(p P P

which is strictly greater than S®), proving that fully connected mutua-
listic networks increase the number of coexisting species by reducing the
effective interspecific competition.

Having quantified the increase in biodiversity due to mutualism in
the fully connected case, we proceed by assessing how this mutualistic
effect is shaped by the structure of mutualistic networks (Fig. 1b, ¢). We
will repeat the above arguments relaxing the assumption that plant and
animal species interact with all species in the other group. Whereas the
effective competition matrix in the case of mean-field mutualism con-
tained terms describing an average identical effect of one species on
another, now the elements of the effective competition matrix, c?) are
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different and have to be written explicitly as (Supplementary Methods)
(P) aP

1 4P
SO s T ) (5)

where 0;;is the Kronecker delta function (1if i = j, 0 otherwise), Ris the
mutualism-to-competition ratio (Supplementary Information equa-

tion (23)), 1!

i
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P is the number of interactions of plant species iand ng})) is

the number of shared interactions between species i and j. Importantly,
the right-hand side of equation (5) decreases with the nestedness of the
mutualistic network (as defined in Methods). As a consequence, by
inspection nestedness reduces the effective interspecific competition
for a given distribution of number of interactions across plant species
and fixed parameters. Because the predicted maximum number of
plant species (equation (4)) increases with decreasing effective com-
petition, the model predicts that the more nested is the matrix, the
higher is the maximum biodiversity.

To explicitly quantify the increase in biodiversity (from the base-
line of an exclusively competitive system) due to the nested architec-
ture of mutualistic networks, we computed the derivative of the
predicted maximum number of plant species (equation (4)) with
respect to the mutualism-to-competition ratio:
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Here (n?) = Z P /5®) and ((n™)?) Z (n(P)) /S®) are the
mean and mean-square number of mutualistic interactions per plant
species, respectively. This derivative increases with the parameter

7® :Z (P ) ((S(P) 1) Z (P)), which is highly correlated

with the measure of nestedness defined in Methods. As seen above,
mutualism of the fully connected type always increases the number of
coexisting species, setting a maximum limit to biodiversity (fully
connected networks have the maximum numbers of absolute and
shared mutualistic interactions; Fig. la). Structured networks,
however, may increase the effective competition and reduce bio-
diversity if there are not enough shared interactions (that is, for
low nestedness; Fig. 1c), or if direct competition is strong so that
the predicted maximum numbers of species in the absence of mutu-
alism, S and S®, are small. Therefore, the architecture of mutua-
listic networks highly conditions the sign and magnitude of the effect
of mutualism on the number of coexisting species. Nestedness pro-
vides the maximum number of species given a certain number of
interactions (Fig. 1b). The next question is to unravel how nested
mutualistic networks arise in the first place. In Supplementary
Methods, we analytically show that a new species entering the com-
munity will experience the lowest competitive load, and will there-
fore be most likely to be incorporated into the community, if it
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Figure 2 | The nested architecture of real mutualistic networks increases
their biodiversity. a, The increase in the predicted maximum biodiversity
(sum of plant and animal species) of a mutualistic network as a function of
its value of nestedness. Each symbol represents a real network.

b, Relationship between the increase in the predicted maximum biodiversity
for real networks versus randomizations. All significantly nested networks
(filled symbols) show a higher increase in biodiversity. The increase in
biodiversity is calculated as a numerlcal ap})roximation to equation (6). The
observed numbers of species (S*) and V) are given in Supplementary
Table 1. Other parameters are S*) =S =50 and R = 0.005.
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interacts with the most generalist species. This naturally leads to a
nested network.

To illustrate the predicted effect of network architecture on bio-
diversity, we incorporate the structure of each one of 56 real mutua-
listic networks (Supplementary Table 1) into our analytical expression
(equation (5)). In Fig. 2a, we plot the increase in biodiversity in rela-
tion to the baseline limit without mutualism (equation (6)) against the
level of nestedness. As can be seen, real communities that are more
nested show higher increases in biodiversity. It is possible, however,
that this increase is mediated by a covariant variable such as the
number of species or interactions. To rule this out, we use an alterna-
tive way of exploring the role of network structure that keeps constant
all variables but nestedness. Figure 2b shows the comparative increase
in biodiversity for both real and randomized networks (Methods). In
the bulk of communities (45 of 56, P = 2.0 X 10~ ¢, binomial test), the
real architecture induces a higher increase in biodiversity than the
randomization. More importantly, all networks that are significantly
nested (Methods; filled symbols in Fig. 2b) have a greater increase in
biodiversity than do their randomizations. Nestedness may be corre-
lated with other properties of network structure such as degree distri-
bution or disassortativity, and the overall contribution to biodiversity
increase may therefore be a composite of all these properties that shape
the architecture of mutualistic networks.

Our analytical framework can complement previous non-interacting
or mean-field approaches to ecology'?, by quantifying the importance
of network structure for biodiversity. Ideally, this could provide an
assessment of the relative contributions of different mechanisms to
biodiversity maintenance, a critical task at present in the face of global
change. A variety of systems can be described as similar cooperative
networks” ™. The dynamics of such systems can be captured by
appropriate versions of the mutualistic model studied here.
Therefore, our analysis can be extended to address questions such as
to what extent systemic risk depends on the structure of the financial
systems"’, how the optimum number of companies is determined by
the architecture of contractor—manufacturer networks', and to
what degree the structure of social networks favours the evolution of
cooperation™.

METHODS SUMMARY

We used a mutualistic model defined as a system of differential equations. It
describes the dynamics of a community of n plant species and m animal species as
a function of their intrinsic growth rates, interspecific competition, and mutua-
listic effects represented as nonlinear, saturating functional responses (Holling
type II). We controlled the structure of the plant—animal mutualistic network
and were able to analytically solve the model for several network architectures.

We analytically estimated nestedness by averaging the number of shared inter-
actions between two given plants relative to their respective numbers of inter-
actions. In a completely nested matrix, the sets of interactions overlap, therefore
maximizing the above quantity. This analytical measure of nestedness allowed us
to directly relate nestedness to the effective competition matrix, and to write our
analytical solutions as a function of nestedness.

We assessed the significance of nestedness by estimating the probability, p,
that a randomization of the network is equally or more nested than the real
matrix’. Our randomizations assumed that the probability of an interaction
was proportional to the generalization level of both the plant and the animal
species’.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
The mutualistic model. The dynamical equation for the population of plant
species i is
dN" e BN
—qr =% N =Y _BPNDN]
JjeP
(P) \7(P) A7(A) (7)
Z Vi NNy
P) nr(A
RO S N

where upper indices (P) and (A) denote ‘plant’ and ‘animal’, respectively, N;
represents the number of individuals of species i and P and A indicate the sets
of plant and animal species, respectively. The parameter o; represents the intrinsic
growth rate in the absence of mutualism, and f8;; represents the direct interspecific
competition for resources between species i and j (for example light and nutrients
in the case of plants, and breeding sites in the case of animals). The last term
describes the mutualistic interaction, through nonlinear functional responses
representing a saturation of consumers as the resources increase. The parameter
7k defines the per capita mutualistic strength of animal k on plant 4, and & can be
interpreted as a handling time. The equations for animal populations can be
written in a symmetric form by interchanging the indices (A) and (P).
Equation (7) incorporates all elements recently adduced as necessary ingredients
for a realistic model of facultative mutualism'”*’, plus additional ones such as the
explicit interspecific competition term. It generalizes previous mutualistic models
and allows the reconciliation of previous results on particular cases
(Supplementary Methods).

Fixed points of the model. We can analytically obtain the fixed points of model
(7) through some algebraic transformations and Taylor expansions (see
Supplementary Methods for the full analytical development). There are two
different solutions. The first is characterized by small equilibrium biomasses,
N < 1/hy. Because the mutualistic strength, 7, has to remain small for this to be
stable, we call this regime weak mutualism. A second type of fixed point, which
we refer to as strong mutualism, corresponds to equilibrium biomasses, N, of
order 1/hy. As soon as the weak-mutualism fixed point becomes unstable, the

nature

strong-mutualism fixed point becomes stable. Because mutualistic networks are
built upon weak dependences'’, the weak-mutualism solution seems the most
plausible; it is the one considered in the main text, whereas the strong-mutualism
regime is described in Supplementary Methods.

The weak-mutualism fixed-point equations can be written in the form of a
linear system, Z C,@jp) Nj(P) = pfp), where pf-P) are the entries of the effective
productivity vector (Supplementary Methods). We show in Supplementary
Methods that the necessary and sufficient condition for dynamic stability in
the weak-mutualism regime is that all equilibrium biomasses are positive and
the effective competition matrix is positive definite (that is, all eigenvalues are
real and positive).

Measuring nestedness. The level of nestedness of the mutualistic matrix is usually
estimated by means of appropriate software>'>*°. Here we introduced an explicit
definition of nestedness that makes the calculation more straightforward and had
the advantage of being related to the form of the effective competition matrix. For
plant species, it reads

Yigj ”E'f '
Ziq min (nE-P),nJ(P))
S-P), nﬁp)) refers to the smaller of the two values ngp) and n;P). A sym-
metric definition holds for animal species. This nestedness index ranges from zero
to one, and is highly correlated with previous measures of nestedness.
To assess the significance of nestedness in a real community, we used a popu-
lation of randomizations of the real community. Our null model randomized the
interaction matrix probabilistically maintaining the generalization level of both
the plant and the animal species. Specifically, the probability of an interaction
between plant i and animal j, 7;; is given by the following expression®, where p;
and g; are the fractions of occupied cells in row i and column j, respectively:

pit+q;
TC,']' = 72 /
As a statistic indicating significance, we estimated the probability, p, that a
randomization was equally or more nested than the real matrix’.

n® =

Here min(n
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SUPPLEMENTARY INFORMATION

1 Community model

We consider here model communities of plants and pollinators or seed dispersers where
species in the same group are in competition between each other and interact mutualis-
tically with species in the other group. We represent through Ni(P) and NN, IEA) the species
abundance density of the i-th species of plant and the k-th species of animal respectively,
and with S®) and S™ the observed number of such species. The intrinsic growth rates
in the absence of competition and mutualism are represented as aEP) for plants and a,(CA)
for animals. In the latter case, they may be either positive or negative, representing the
difference between the growth rate in the absence of any plant and the death rate. This
choice has no relevant effect on the qualitative results.

For the sake of mathematical simplicity, we represent direct competitive interactions
between species ¢ and j through a linear functional response, —ﬁi(f N ;P) in the case of
plants and —ﬁ,(j)Nl(A) for animals. The competition matrices ﬁi(f A are assumed to be
symmetric and positive, with all positive or zero elements, both for plants and for animals.

The mutualistic interactions between plants and animals are modeled through non-
linear functional responses of Holling Type II', f (N) = (yN) /(1 + hyN). The denomi-
nator of the Holling term slows down the functional response when the densities are large,
N = 1/h~, limiting the maximum growth rate as 1/h and preventing it from diverging
in the large N limit. The parameter h can be interpreted as a handling time. The mu-

tualistic interactions network is described by a matrix %(JP) whose non-negative elements
represent the increase of the growth rate of the plant species ¢ per unit of animal biomass
J, in the limit of very small animal biomass. Similarly, 'yj(-?) has all non-negative elements
that represent the increase of the growth rate of the animal species j per unit of plant

biomass 7.
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The resulting dynamical equations for the plant populations are

L av®” (P) \r(P) i N
P =0 =) BN+ ) : P) N (A) ()
N dt jeP A THRO Y N

The equations for animal populations can be written in a symmetric form interchanging
the indices A and P. When not otherwise stated, we will in the following only write down
equations for plants.

In the next section we analyze the fixed points and dynamical stability of the model,
leaving for section 3 the interesting problem of how the effective competition limits the
structural stability of the model, and correspondingly its maximum biodiversity. Section
4 is a summary of the main results of the stability analysis. This is followed in Section
5 by an analysis of an assembling network, showing that a new species entering the
community is favored by interacting with the most generalist species. Section 6 explores
the robustness of our analytical results when other interaction types are included (6.1) and
when departing from the mean field assumptions using numerical simulations (6.2). We
conclude this online material with three appendices, one with the proof of the dynamical
stability condition, the second with the numerical calculation of the predicted maximum

biodiversity, and the last one presenting the mutualistic networks analyzed in this paper.

2 Fixed points and dynamical stability

We will consider here the fixed points of the dynamical system, defined by the equations
dNi(A’P) /dt = 0, and analyze their stability. In order to get analytic expressions, we will
exploit the fact that the handling time A is small compared with the typical intrinsic time
of growth 1/a. We find two different types of solution. The first one is characterized

by small equilibrium biomasses, N < 1/h~y. In this limit, we can expand the functional
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response in a Taylor series, whose dominant term yields a linear system of fixed point
equations. We call this regime weak mutualism. A second type of fixed points correspond
to equilibrium biomasses N of order 1/hy. In this case the linear system is not a valid
approximation, but it is now possible to get analytic insight by neglecting the terms ha
with respect to hyN. We call this regime strong mutualism.

Furthermore, in order to simplify the analytic expressions, we will consider mainly
direct competition matrices @(;) ) of mean field type, with ﬁi(;) ) = ﬁép) (p(P) +(1- p(P))dij)
(see ref. 2), where §;; is Kronecker’s delta (one if i = j and zero otherwise). The
dimensionless parameters p() < 1 measure the extent of interspecific competition between

different species of the same group.

2.1 Pure competition

For a purely competitive system, i.e., vy, = 0, the fixed point densities {N;} satisfy the

system of equations

Zﬁf’)N . (2)

The analytical expressions are symmetrlcal for the case of the animals. The necessary
and sufficient conditions for dynamic stability are that (i) all equilibrium biomasses must

be positive; and (ii) the direct competition matrix § must be positive definite.

2.2 Weak mutualism: mean field

We now integrate mutualistic interactions into the competitive community. If the equi-
librium densities are small, N < 1/h7, which is a valid approximation within the weak
mutualism regime, the fixed point equations for the plant communities at the dominant

order in h can be written in the form of a linear system,
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>N =", (3)
;

These equations are mathematically equivalent to the fixed points of a purely competi-
tive system, Eq.(2). We call the vector p; effective productivity and the matrix C;; effective
competition. We will prove in Appendix A that, in analogy with the purely competitive
system, the equilibrium fixed point is stable if and only if the effective competition matrix
is positive (i.e., all of its eigenvalues are positive) and all the equilibrium densities are
positive.

At zero order in h, the effective productivity and the effective competition are given

by the expressions

P (1) (A
" + Z%k kl l( )7 (4)
P) _ @) ) ANGED _A)
Cyi' =By _Z%‘k (ﬁ( ))kz Vi (5)
kL

First order corrections in h are straightforward to compute, and do not change the qual-
itative picture. They will be omitted in the following.

We first consider mean field mutualist interactions, with all species of plants and an-

imals interacting between each other with equal per capita mutualistic effect, fyi(,f P

WéA’P) . We will relax this assumption later on. With this assumption, the effective com-

petition matrix turns out to be of mean field type,

) = 50— ) [5 (1= o20) + 5] (6)
® _ ’7(()P)’7(()A) S(A) (7)
AN a7 (SR + (1 — p@)))-
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The effective interspecific competition is given by

v p® —a®

g P)
pmut 1 o CI,(P) < p . (8)

We see from the above expression that, for the mean field system and for values of the

(P)

mut 1S smaller than the

parameter a(P) € [0, p(P)], the effective interspecies competition p
bare competition pF), i.e., mutualistic interactions of mean field type reduce the effective
interspecies competition. Eq. (8) is valid for a®) < p®) 4 (1 — p®))/S®) At this point,
the main eigenvalue A\; of the effective competition matrix becomes negative and the
community enters into the strong mutualism regime.

Stability of the weak mutualism fixed point requires that the effective competition
matrix is positive. The eigenvalues are A\; = (1 —a) (Spr(fgt + (1 - pg’gt» = S(p®) —a)+
(1—p®™))and A\, = (1 —a)(1 — Pt )= (1—p®)) (k> 1). Positivity of the competition

mut

matrix requires that S(p®™) — a) + (1 — pP)) > 0, which in turn yields the condition

1— o) 1— p®)
P)(A) A P P P
Yo o <ﬁoﬁ (()‘f'w)(P()‘f' S(P) )7 9)

which generalizes the result presented in ref. 3 to the case where the interspecific com-
petition is not zero. Notice that, if p¥) and p®) are not zero, the maximum value of
mutualistic interactions in the weak mutualism regime does not vanish for large ecosys-

tems (large S() and S®), but it is limited as ’y(g (A < 6 ﬁ pA)pP),

2.3 Strong mutualism: mean field

For mutualistic interactions stronger than Eq.(9) the weak mutualism fixed point is not
stable, and we have to consider the strong regime in which the equilibrium biomasses are

of order 1/h. In order to get analytic results, we neglect higher order terms in h, such as
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ha. We consider mean field systems in which all pairs of species interact with the same

strength. In this case, positivity of the equilibrium biomasses requires that

W @)
P) (A P) o(A l—p 1—p
A > a0 s <,0(A> o ) <,o(P> o) ) . (10)

Therefore, we see from Eq.(9) that, as soon as the weak mutualism fixed point ceases
to be stable, the strong mutualism fixed point becomes stable. For the mean field case,

the strong mutualism fixed point allows coexistence of an arbitrary number of species,

(P,A)

independent of the values of the intrinsic growth rates o

2.4 Strong and weak mutualism can not coexist

In the general case, stability of the strong mutualism fixed point with positive densities
requires that the effective competition matrices C™ and C®) are not positive definite,
i.e., at least one of their eigenvalues is negative or zero. The proof goes like this. In the

strong mutualist regime we can neglect the terms ha; and the fixed point equations are

(P) r(4)

N® — Z (ﬁ(P))._.l Z ik . (11)
% P A
j Sl B ISD DN %'(l )Nl( )

Since YN/(1 4+ hyN) < N, it follows that, in the strong mutualism regime,

N <Y ((5(13))—1 @) ()7 7(A))U NP =N MmN (12)
g J

We have defined here the mutualistic matrix M ") = (6(P))_1 ~(P) (6(A))_1 vA) . The
effective competition matrix CF) can be written in matrix notation as CF) = g®) (I — M )
where I is the identity matrix. Since the direct competition matrix 3®) is positive, if CF)
is positive then all eigenvalues of M must fulfill A(M) < 1 (see Appendix A). Together

with Eq.(12), this implies that the solutions of the fixed point equation must have Ni(P) <0
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for all . The same applies to N if CN) is positive. Therefore, if the weak mutualism
fixed point is stable, no stable strong mutualism fixed point can exist.

If we relax the mean field assumption, the behavior of the strong mutualism regime
changes dramatically. To get some flavour of this, we examined the simplest possible
system, where all species are below the weak mutualism threshold and interact with
coefficients 70 ) and 70 ) such that 7 70 ﬂ P) o) but one pair of species,
animal species 1 and plant species 1, have a strong mutualistic interaction with interaction
coefficients 'yi 71 > ﬁo ﬁ (&), Solving the fixed point equations and considering all
possible cases, it can be shown that in this case there is no possible fixed point where the
species below the strong mutualism threshold have positive biomass. It follows from this
analysis that, if one pair of species overcomes the strong mutualism threshold, no other
species below the threshold can coexist with them at any fixed point. Notice that we have
considered the best possible interaction matrices +;;, since all species below the threshold
are assumed to interact with all other species, including the strong interacting ones. To
allow coexistence, it would be necessary to relax the hypothesis that all other species are
directly competing with the strong interacting species.

Therefore, the model predicts that, when a pair of species overcomes the strong mu-
tualism threshold while the other species remain below it, all species below the threshold
become extint, pointing out the interesting possibility of mutualism-induced extinctions.

We will analyze this regime in more detail in a forthcoming work.

3 Structural stability and biodiversity

Dynamic stability is an important requirement for the fixed point of a model ecosystem
to represent properties of a real ecological community. Despite being neither a necesary,

nor a sufficient requirement, local dynamic stability is a simple analytic criterion that has
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been widely used in theoretical ecology, giving very interesting insights on the properties
of real communities. However, we believe that other interesting insights can be gained
by considering structural stability, i.e., the stability with respect to modifications in the
parameters of the dynamical system. In this section, structural stability is meant as the
volume in parameter space compatible with positive densities at the fixed point. Interest-
ingly, for competitive systems structural stability in this meaning is negatively correlated
with the number of species in the system, so that, by considering a minimum variance of
the parameters compatible with the environmental variability, we can predict the maxi-
mum number of species that can coexist in the system*. We show here that it is possible
to extend this analytic insight also to communities in which competition and mutualism
coexist. Notice that the existence of a direct term of interspecific competition, p™), is an
essential characteristic of our model with respect to other models in the literature, which

alters completely its properties of structural stability.

3.1 Effective competition and structural stability

We consider here a species community in which the fixed point equations can be written in
the form ) j C;jN; = p;. We refer to C; as the effective competition matrix and p; as the
effective productivity vector. This formulation is rather general. It is suitable to represent
a purely competitive system, in which Cj; = §;; and p; = «;, a system with predation
(see ref. 4) or a system with weak mutualism, in which the effective competition matrix
and the effective productivity vector are given by equations (5) and (4), respectively.
It is convenient to normalize the effective competition matrix as
By= 20 (13)

in such a way that B; = 1. From the main eigenvalue of this matrix, A;(B), we can derive
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the effective interspecific competition parameter p as

M(B) -1

o1 (14)

p=

If the effective competition matrix is a direct competition matrix of mean field type,
Bij = p+ (1 — p)dyj, it holds A\ (B) = Sp+ (1 — p) and, consequently, p = p. Thus, the
quantity p measures the effective interspecific competition, generalizing the mean field
parameter p. Positivity of all equilibrium densities imposes more and more stringent
conditions on the effective productivity parameters {p;} for increasing number of species
and interspecific competition p (see ref. 4). This result generalizes the mean field result
in refs. 2, 5 and 6. In other words, the larger is p, the less structurally stable the
system is, in the sense that the productivity vectors must be fine tuned in order to get
positive equilibrium densities. Assuming that the fluctuations of the productivity vector
are limited from below by the environmental variability A, we obtain the following limit

to the maximum biodiversity S (ref. 4)

S<14 (1gﬁ) (AQ(B)/(lA—ﬁ)—A) ‘ (15)

For mean field competition matrices, it holds p = p and A\o(B) = 1 — p, whence S <
S(1 — A)/A. Therefore, we define the maximum biodiversity parameter
1—

e (16)

™

S

which sets the scale for the maximum biodiversity that a competitive community can
host.
In this work, since we use direct competition matrices of mean field type, we will use the

notation S = (1 — p)/p for the maximum biodiversity for the purely competitive system,
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Pmut for the effective interspecific competition in the presence of mutualistic interactions,
and Syut = (1 — pmut)/Pmue for the maximum biodiveristy in the presence of mutualistic

interactions.

3.2 Weak mutualism: mean field

The above calculations remain valid in the weak mutualist regime. As we have seen, if
the mutualistic interactions and the direct competition matrix are of mean field type, the
effective competition matrix is also mean field, and the effective interspecific competition
parameter can be analytically computed as in Eq.(8). We see from this equation that mean
field mutualism reduces the interspecific competition, thereby increasing the number of

species that can stably stay in the system, which is now given by

P <(P)
R

3.3 Weak mutualism beyond the mean field: nestedness

Now we relax the mean field assumption that plant and animal species interact mutual-
istically with all species in the other group, but for mathematical simplicity, we mantain
the assumption that the strength of all existing mutualistic interactions are equal. We
will refer to this model as the soft mean field. Therefore, we can define a binary matrix g;
whose elements are one if the link is present and zero otherwise, such that v;. = 0. It
holds that gf,lj) = gli?). We further denote the number of links of plant ¢ as nEP) =D gi(: )

and the number of common links of plants ¢ and j as

P P) (P
ng =g g (18)
k

which we call the overlap matriz.
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The elements of the overlap matrix fulfill the inequalities n;; < min (n;,n;). We say
that the interaction matrix g is maximally nested if all the elements of the overlap matrix
take their maximum possible value, namely if n;; = min (n;, n;). This definition coincides
with the definition of a maximally nested matrix in terms of the nesting algorithm?”. This
algorithm proceeds by what we will refer to from now on as nesting steps. Each nesting
step tries to exchange two matrix elements with a common index, either a column or a
row, for instance «;; and «;;. The move is accepted if the nonzero element is moved to
a row (column) whose number of links after the move is larger than the number of links
in the original row (column). No row (column) is allowed to be left without any link.
A maximally nested matrix is a matrix which can not be changed anymore through this
algorithm. This is the case when n;; = min (n;,n;). We therefore define the nestedness
of the matrix g with respect to plants as

P = 2i<i ”g‘)) . (19)
> ic;min (nz(»P), TL;P))
The symmetric definition holds for the nestedness with respect to animals. It is easy

(P)
ij

g.)) = min <n

to see that the nestedness defined above is zero if n;.;” = 0, which we define as anti-

(P)

nested interactions, and one for perfect nestedness n ; ,n§P)>. For random

networks with the same number of independent interactions as in the real network, the

average nestedness is n'"), = > nEP) / (S®ISW).

rand
3.4 Weak mutualism beyond the mean field: soft mean field

In order to get a simple analytical formula that explicitates the influence of the network
architecture, we introduce here the soft mean field model, in which all parameters are
equal but the mutualistic network is not fully connected as in the mean field case. In this

model, the direct competition matrix 3;; is of mean field type and all non-zero mutualistic
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interactions are equal, ’yl-(l-)) = (()P)gz‘(gl'j :

(P)

, where the binary matrix g;;° is the adjacency

) is the transpose of gg).

matrix of the mutualistic network and gZ(jA
We still have to specify the intrinsic growth rates a; (or death rates, if they are

negative). For this purpose, we explicitate the effective productivity vector from Eq. (4),

® @) 7 (P) (&) SW s
TN Y R S o NS Ay I )
(A)(1 — p) z]: 7 gy 4 gW

where a(®) is the average growth rate (or death rate, if v is negative) of species of type
(A).

As we have seen, a necessary condition for species coexistence under competition is
that the effective productivity vector has a narrow distribution. Therefore, we assume
that the evolutionary process building the community leads to a narrow distribution of
effective productivities, and that its dispersion A, which appears in Eq. (15), is the
smallest one compatible with the unavoidable environmental variability, and it does not
change in the presence or in the absence of mutualism. This assumption, which has to
be justified through an explicit model of network assembly, implies that the a; must
be chosen negatively correlated to the number of mutualistic links, and it allows us to
concentrate the focus of our analytic computation on the effective competition matrix
This depends on the network architecture but it does not depend on the «;, which will
not play any role in the following analytic computation.

Alternatively, we could formulate the soft mean field model in such a way that the
more mutualistic links a species has, the weaker these links are, defining the mutualistic
parameters as 7v;; = 7o/ f(n:)gij, where f(n;) is a growing function of the number of
links. This equation assumes that specialist species are more efficient than generalist

species in dealing with their mutualistic partner, which is a quite plausible assumption. In
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this formulation, the function f(n) should be chosen such that the effective productivity
vector given by Eq.(4) is uncorrelated with the number of mutualistic interactions n;.
This formulation of the soft mean field model would lead to different expressions for the
effective competitivity matrix from the one that we present below, and we will study this
formulation in following work.

In the weak mutualism regime, the normalized competition matrix Bg) ) is defined

through
C’i(P) 1 ngp)n(P) p

e =0y + =gy + R —— =y, (21)

B (1= p™)) S SW 4§
c®)

BY) =——49 (22)
Ci'Cly

where

’Y(()P)VSA)
R= : (23)
BB (1 = p®) (1 — p)

Notice that the matrix B®) depends only on three numerical parameters, R, g(P) and

W,

To get more analytic insight on how mutualism influences biodiversity, we computed
the derivative of the main eigenvalue of the normalized effective competition matrix,
A1 (B(P)), with respect to the mutualistm-to-competition ratio R at the point R = 0
(absence of mutualism) This calculation shows that the effective interspecific competition
decreases with the nestedness of the mutualist interaction matrix for a given distribution
of number of links {ngp)} and fixed parameters. Since the maximum predicted biodi-
versity §$3t increases with decreasing effective competition, the model predicts that, for

perfectly nested mutualist networks, the effective competition is weakest and the maxi-

mum biodiversity is largest. Therefore, nested mutualist interactions favor biodiversity.
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Specifically, calculating the derivative of Ay (B (P)), we can easily obtain the derivative
of the maximum biodiversity 3311 = (1 - pgu)t> /p") where pl) = (M (B®) —1) /(S®)—
1) is the effective interspecific competition parameter, with respect to the mutualism-to-

competition ratio. This measures the relative increment of the maximum biodiversity due

to mutualism, and is equal to

<(P)
1 85 t 1 f(P) (P)
oy — _ (P) ~(P) _ __(n®) )_ AP
g™ OR (1+S(P)><n ) [S (77 smsm) — (=)
mut R=0
(nP)2) —(n®))? (S(P)+§(P)>
+ (n®)y(s@) g™y | SFI-1 ) (24)

where (n®)) = 32 n" /S®) and <(n(P))2> =3 <n§P)>2 /S®) are the mean and mean
square number of mutualistic interactions per plant species. The parameter HF) =
D s ng.)) / ((S(P) —-1)>, nEP)> is very strongly correlated with the nestedness defined
in Eq.(19) (for real networks, the correlation coefficient between nest and the nestedness
parameter is 0.97).

The derivative in the above equation is not bound to be positive. In particular, the
derivative is typically negative if there are few shared interactions (small ) together with
strong direct competition (small E(A)), so that the term f— (n(™)) /(S —l—g(A)) is negative.
This result shows that mutualism can also increase the effective competition and hinder
biodiversity. Although it looks counter-intuitive, this result can be easily understood by
considering that, if plant species ¢ and j do not share any animal species (ng.)) = 0),
the direct competition between the animals interacting with them has the net effect to
increase the effective competition that ¢ and j experience. This illustrates how the direct
competition for resources explicitly described by the f;; terms in Eq. (29) is now mediated
by the use of a common set of mutualismstic partners.

A second more stringent condition for mutualism to enhance the maximum biodiver-

sity is that the reduction in interspecific effective competition Cj; must be larger than
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tice that, for networks in which 7 attains the maximum possible value 7 = 1, as the fully
connected mean field network, the increment of biodiversity Eq.(24) is always positive,

independent of the parameters g(A) and g(P).

4 Summary of the stability analysis

We have shown here that (1) the weak mutualism fixed point is stable if and only if all
equilibrium densities are positive and both matrices C) and C®) are positive definite;
(2) the strong mutualist fixed point can not have positive densities if the matrices C'*)
and O'®) are positive definite; (3) when the system is in the weak mutualism regime, \; (B)
is positive. The limitation to biodiversity imposed by competition becomes less stringent
as A\ (B) decreases, and they disappear when A\;(B) = 1, implying through Eq.(14) that
Pout = 0. The maximum biodiversity that each group (plants or animals) can attain is
controlled by the main eigenvalue of the normalized effective competition matrix B, and
it is larger, the smaller is this eigenvalue, A;(B). As soon as A\;(B) becomes negative,
the weak mutualism fixed point looses its stability, and the strong mutualism fixed point
can become stable. However, if only one pair of species overcomes the strong mutualism
threshold while the other species still remain below it, the model predicts that only the
species above threshold will eventually survive, whereas the other species will go extinct,

thus suggesting the interesting possibility of massive extinctions caused by mutualism.

www.nature.com/nature 15



doi: 10.1038/nature07950 SUPPLEMENTARY INFORMATION

5 Assembly of mutualistic networks

Consider the arrival of a new animal species into a community in the weak mutualism
regime (for plants, the mathematical treatment would be exactly symmetric). We will
assume that the new species, labelled as 1, is specialist, i.e., it can interact only with one
plant species, also labeled as 1. We will show that, if plant species 1 is generalist, the
animal species 1 will experience the lowest competitive load, and it will be incorporated
most likely in the community.

To prove our thesis, let us consider the effective competition matrix elements for the

new animal species 1:

= 8D 43 (3™ D, (25)

k
where we have explicitly used the fact that the new insect species 1 is specialist. Let

us now consider for the sake of simplicity a direct competition matrix B3®) of mean
field type. The analytic expression for the inverse matrix is (B(P))_l =1/ ﬁép)(l —
P (&-j +1/(S®) + E(P)), whence

(A)
(A) _ p(A) 11 (P)
— 51;’ ﬁép)(l _ p(P_)) (71j S 1 S(p Z%J ) . (26)

Summing over all animal species j, we find

2.0 =28 ”“ (Z =L Zw&?))- (21)
J

The only term that depends on the plant species 1 with which the new animal interacts
is ) i 7$). The larger is this term, the smaller the competition experienced by the new
species. Now, although we expect that individual interaction coefficients 7%)) tend to be

larger for specialist species than for generalist species, we also expect that the sum of all
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interactions » ; yg) is largest if plant species 1 is generalist. Therefore, a specialist species
is favoured if it interacts with a generalist species, producing nested interaction patterns.
This result confirms a recent suggestion that we have to move beyond competition to
predict ecosystem invasibility®, and provides an analytical framework to quantify such an

effect of positive interactions.

6 Robustness of our analytic results

Our previous results are based on an analytical solution of our model, i.e., on an anal-
ysis of the equilibrium. To obtain such analytic results we have had to make a series
of assumptions. To begin with, the model only considers mutualistic and competitive
interactions, and therefore one can wonder how robust are our results when other in-
teraction types such as predation are considered. Second, our analyses are based on a
mean field assumption whereby the values of competitive coefficients (), for example,
are the same across species. Similarly, we use a soft mean field approach to deal with
mutualistic coefficients: while we address the real network of interactions, and therefore
some interactions are zero, the observed interactions have the same value of mutualistic
strength (7). Finally, the emphasis on equilibrium precludes an analysis of the transient
time before reaching this solution or other dynamic properties. In this section we explore
the robustness of our results when these assumptions are relaxed and briefly address these

other questions.

6.1 Introducing predation

The formalism of the effective competition matrix allows an analytic treatment of a gen-
eralized system including predation. This will allow us to test whether our results are

qualitatively unchanged when another interaction type is considered.
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We consider four groups of species: plants (P), animal pollinators or seed dispersers
(A), herbivores (H) and consumers that predate animal mutualists (e.g., insectivorous
birds that predate over pollinator insects) (C). The groups A and P are related through
mutualistic interactions, the groups A and C are related through prey-predator interac-
tions, and the same holds for the groups P and H. To simplify the mathematical treatment,
we assume that no inteaction occurs between groups C and H (this assumption can be
easily relaxed). Species within each group compete between each other. Assuming for
simplicity a linear predator functional relationship of Lotka-Volterra type, the dynamic

equations for plants and herbivore species are

1 dN, ,;(P o) (P) A7(P) %‘(15 'N JEA) ®) v
P = Z ﬁ N Z P A Z 5 t28)
Ni( ) odt jeP ea L+ h(P) ZleA 'Yz'(z )Nl( ) keH
1dn a _ (50 ) (H) 77(P)
i jeEH keP

The equations for mutualistic insect populations and for insectivorous can be written
in a symmetric form interchanging the indices A and P and C and H, respectively. Here we
use the same notation as in the paper: superscripts indicate the group of species, « is the
vector of intrinsic growth rates, positive for plants and negative for animals, the matrix (3
represents intra-group competition, the matrix v represents mutualistic interactions, and
the matrix 0 represents predator-prey relationships. Notice that in this way all possible
kinds of pairwise ecological interactions are represented in the model.

In the weak mutualism regime, and in the small h approximation, the fixed point

equations can be written, after some algebra, in the form

SUPPLEMENTARY INFORMATION
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> CyN =, (30)
ij
Y N =, (31)
ij

again, we only show plant and herbivore species since the equations for insects and car-
nivors can be obtained by permutation of indices. In matrix notation, the effective com-

petition matrices C' are given by

CP) — [(P) L GG _ 5(P) ( ™ 4 gwg(@) - (4) (32)

B -1
o) _ )y 5m l]a)) _5(P) < @A) +g<A)g;“<c>> 1~7<A>} 5@ (33)

Y

where C = 371C, 5 = 31y and § = 371§ are competition reduced interaction matrices.
Through a development similar to the case of mutualism without predation it is possible to
show that the equilibrium points are stable if and only if (1) all the equilibrium biomasses
are positive, and (2) the effective competition matrices are positive definite for all four
groups of species.

Furthermore, the structural stability is related to the effective interspecific competition
parameter (which in turn can be obtained from the maximum eigenvalue of the normalized
effective competition matrix, as discussed in the paper). This relationship determines that
a system with a smaller interspecific competition parameter will be more structurally
stable and it will sustain stable equilibrium points for a broader range of productivity
parameters ;. This, in turn, will allow on average a larger number of coexisting species.

Through Taylor expansion, we can compute the effective competition matrix C®) as

follows:
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- ~ o~ b ~ Nk s~ N E
C® = [®) 4 §EFH _FOFN) _§7(1)k5) <5<A>> <5<c>) A (34)
k=1

The terms in the sum are sub-dominant, since stability of the fixed points requires that
the matrices Y®)FA) §PFE and §AFO) have eigenvalues smaller than one. Taking
into account only the dominant terms, i.e., omitting the sum, and using the soft mean
field approximation in which the elements of the mutualistic interaction matrix v and
the predatory interaction matrix J are either zero or they are all equal, it is possible to
relate structural stability with the architecture of ecological interactions. In particular,
by analogy with the case with mutualism and competition, we see that the effective in-
terspecific competition parameter is reduced if mutualistic interactions are nested and
predatory interactions are antinested, therefore increasing structural stability and favour-
ing biodiversity. The correlations between the mutualistic network and the predatory
network introduces another interesting level at which we can study the architecture of the

community.

6.2 Numerical results

We tested our analytic theory through numerical simulations. In particular, we wanted
to test the following key aspects: whether the model ecosystems attain fixed points,
how rapidly they reach equilibrium and whether some interesting dynamical behavior
is observed in the transients. These issues were examined considering fully connected
ecosystems. We chose the growth rates a from uniform distributions with variable width,
in order to test our predictions that the width of the growth rates distribution limits the
maximum possible biodiversity. The competition and mutualistic coefficients (3, and
were also chosen from a uniform distribution, in order to test the robustness of our mean

field results with respect to noise in the parameters. Simulations were performed by
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integrating the system of ordinary diffrential equations using a fourth-order Runge-Kutta
method with small integration step.

For purely competitive systems, it can be shown analytically that the stable equilib-
rium points are also globally stable, in the sense that all initial conditions converge to the
equilibrium point. In the presence of mutualistic and predatory interactions global stabil-
ity can not be proven in general, and interesting dynamical behaviors like limit cycles or
even chaos may in principle occurr. Therefore, we tested numerically the convergence to
equilibrium. Our numerical results suggest that the direct competition matrix favors fast
convergence to the equilibrium points even in the presence of mutualism and predation.
In all cases that we simulated, including those with predatory interactions, the system
attained a fixed point after a short transient, in which extinction of some species can
occurr. Supplementary Fig. 1 below shows an example of the dynamics of this system.
These results were robust with respect to fluctuations in the «, 3, and v parameters and
confirmed the expected dependence of biodiversity on the width of the distribution of «
and the expected increase of species abundance due to mutualism. The simulations not
only confirmed our analytic mean field results, but also provided the new observation that
the convergence to equilibrium becomes faster for a mutualistic system with respect to a
purely competitive one.

Simulating ecosystems that are not fully connected requires further choices of the
parameters, which we will explore systematically in future work. As a preliminary obser-
vation, we notice that in this case there must be a trade-off between the three types of
parameters present in our model, i.e. the growth rates «a;, the direct competition coeffi-
cients 3;; and the mutualistic interactions «;;. This can be seen in the following way: The
coexistence condition imposes that the main eigenvector ¢; of the effective competition

matrix, Eq.(5), must be almost parallel to the effective productivity vector, Eq.(4), which
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Figure 1: Temporal dynamics of the abundance of plants (a) and animals (b) in a fully connected
mutualistic community with 50 plant species and 25 animal species. The same system without
mutualism leads to the extinction of one animal and 17 plant species. Parameter values are
as follows: oy are taken from a uniform distribution (0.85, 1.1); Bi; and B;; are taken from a
uniform distribution (0.99, 1.01) and (0.22, 0.24), respectively; ~;; are taken from a uniform
distribution (0.19, 0.21). h®) = p) = 0.1. Initial population densities are taken from a
uniform distribution (0, 1). This parameter combination corresponds to the weak mutualism
regime. Qualitatively similar results are obtained for the strong mutualism regime, in which
transients are even shorter and abundances higher.

means that species that effectively compete more should be able to effectively grow faster
in the absence of competition in order to survive. We verified through simulations (not
shown here) that mutualistic interactions favour biodiversity when such correlations are
implemented in the model, even if the number of mutualistic links is broadly distributed,
provided that mutualism is weak enough to remain in the weak mutualistic regime.

We can think of these correlations either as the product of some physiological trade-off
or as the product of an evolutionary process in which the ecosystem is slowly assembled.
They may be achieved in real ecosystems in various ways, for instance through a trade-
off between the number and the strength of mutualistic interactions, which decrease the
effective competition and at the same time increase the effective productivity. In other

words, specialist species must interact more strongly than the generalists. Another way
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to obtain suitable correlations is a compensation between the growth rates and the mu-
tualistic coefficients, so that species that interact mutualistically with more species have
a smaller growth rate

In order to study the effect of mutualism systematically in networks with broad degree
distributions, we will adopt in further work the following procedure: (1) Consider direct
competition of mean field type, which is more demanding for allowing coexistence; (2)
Extract the mutualistic strengths in such a way that there is a trade-off between the
number of links and their strength; (3) Compute the effective competition matrix and
its main eigenvector ¢;; (4) The optimal distribution (i.e. the one that best promotes
coexistence) of effective productivities P; is predicted to be proportional to the eigenvector
¢;. (5) From this optimal P;, we can compute analytically the bare growth rates «; that
best favour coexistence. Our analytic prediction is that weak mutualism makes the system
more structurally stable, in the sense that it allows more noise on the parameters a; with
respect to their optimal value. We will test this prediction in future extensive numerical

work.
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Appendix A: proof of the stability of the weak mutu-
alism fixed point

We prove here that the fixed point in the weak mutualist regime is stable if and only if
the effective competition matrices C®) and C'™ are positive definite and all densities are
positive.

If there is a fixed point of Eq. (29), at order zero in h, with all positive densities, it
will be stable if and only if its Jacobian matrix J is negative definite, i.e., for any vector
z one must have (z,Jz) < 0, where the brackets denote scalar product, and (z, Jz) is a
generic quadratic form of the matrix J

BTN
I = ( §<A> o ) (35)

We use here the matrix notation for the complete community, where the diagonal elements
B®) and SN are matrices acting on plant indices and animal indices, respectively, the
upper right element ¥*) is a matrix going from plant to animal indices, and the lower
left element v is a matrix going from animal to plant indices. With this notation, the
notation C will denote the matrix formed with the two matrices C®) and C™) as diagonal
elements.

We now show that positivity of C®) and C™ is necessary for the stability of the
fixed point. More precisely, we will show that if J is negative definite then C' must be
positive definite. In order to do this, let us introduce two column vectors x = (z(*), 2(4))
and y = (y®),y®) (here 2 (z*)) denotes the projection of the vector z on the P (A)
subspace respectively), such that 2(» = y®)z®) and y®) = 4Py (A These vectors have
the property that (Jz)) = —C®)z®) (Jz)A) = 0, Jy) = —CAyA) (Jy)®) = 0.

Using these properties, we can see that for a generic vector z = x + y, it holds

(2, J2) = (2P, 0P 1 (), CWA) 4 () cWy @A) 4 (4@ cP)P) (36)
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From this it is immediate to see that if J is negative definite C' must be positive. In fact,
if C™®) is not positive, there is a vector such that (x(P), C(P)x(P)) < 0. Choosing y) =0,
we find (z,Jz) = — (ZE(P), C(P)x(P)) > 0, contrary to the assumption.

We now show that the positivity of C'is also a sufficient condition for stability, i.e., if
C is positive then J is negative. For this proof it is convenient to rewrite the Jacobian

matrix in terms of the competition reduced Jacobian J. ,
(™ 0 —_I®) AN~
J = < 0 AW s g ) =07 (37)
where IP4) denotes the identity matrix in the plant (animal) space, respectively, and

FP) = (BN 71y P) FA) = (BA)) =1~ (A) W similarly define the matrix C, satisfying

®  o\N[E® _
C:(ﬂo 6<A>>< 0 5<A>)EBC’ (38)

where CA) = &) _ M®), C® = @) _ M®) and the mutualistic matrix M can be

written as

SPFA)
_ (7
M= ( 0 e ) . (39)

Since (3 is positive, J (C') will be positive definite if and only if J (5) is positive

definite. We now proceed to show that the statements
1. The effective competition matrix C is positive definite.
2. The reduced Jacobian J is negative definite.

are equivalent. It is crucial to note that M can be written as the square of a matrix,
M = M~/ M, with

~_( 0 7O

M = ( ~(A) ) (40)
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Therefore v M and M will have the same basis of eigenvectors and their eigenvalues
2
will be related by (M) = [)\ (\/ M >] . Furthermore note that the competition reduced

matrices can be written as

J= -1 +VM, (41)
C

I —M. (42)

Thus J. , CN’, M and VM can be diagonalized in the same basis, and their eigenvalues

satisfy

AMC)= 1 —A(M). (43)

If )\(\/M ) is imaginary then it must be pure imaginary since the )\(5 ) are real and positive
by hypothesis. Therefore, in this case it must follow that Re(A(J)) < 0, so that the fixed
point is stable. On the other hand, if A\(v/M) is real, it follows that A(M) can not be
negative. If we now assume that C is positive definite, it follows that 0 < A\(M) < 1,
which implies —1 < A (\/M) < 1 and consequently )\(j) < 0, i.e., the fixed point is
stable.

In this way, we have demonstrated that positivity of the effective competition matrix
and the equilibrium biomasses are necesary and sufficient conditions for stability of the
weak mutualism fixed points.

As a corollary, we see that if C' is positive definite then A(M) < 1, a result that was

used in a previous section.
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Appendix B: numerical calculation

. C e . . . = (A
For a given mutualistic interaction network {g;x} and given parameters R, S ®) and S ( ),

we can compute numerically the effective competition coefficient pggt through Eq.(21),

Eq.(22) and Eq.(14), where A;(B®)) is the main eigenvalue of the normalized competition

matrix B®). The corresponding maximum predicted biodiversity is given by g(P) =

mut
(1— pffjt) / pggt, and it characterizes the biodiversity of the model ecosystem. For R =0

(P)

A E(P),Which can be interpreted as

(pure competition) it holds that p-), = p® and S
the maximum biodiversity of the system in the absence of mutualism

For this computation, we use the same parameters R, g(A), S(P) for all systems. The
parameters E(A), E(P) are chosen large enough so that mutualism favors biodiversity in

(P)

all real networks, i.e., p,.

. decreases with the mutualism-to-competition ratio R when
this is close to zero. The parameter R should be small enough so that all real networks
are in the weak mutualism regime (the matrix B®) is positive for all real networks). To
eliminate the dependence on this parameter, we compute numerically the derivative with

respect to R of the relative increase in biodiversity due to mutualism, using a very small

value of R:

_ <P) <P) &(A) <P)
(P) _ 1 aSl(rrljlzt Smut (Ra S ) S 5 {glk}> - S
™= 25 aR 2 — 5 . (44)
S o RS

We verified that this computation agrees within the numerical precision with the analytical
calculation reported in Eq.(24).

For each model constructed from a real mutualist network {g;x} we considered an
ensemble of random networks with the same number of species and the same number of
mutualistic links and different overlap matrix n;;, so that their nestedness is different, and

we computed ™) both for the real network and for the ensemble of random networks.
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Appendix C: Supplementary Table 1. Real networks

SUPPLEMENTARY INFORMATION

Pollination networks

Network Plants Animals Links Connectivity Latitude
Arroyo et al 1982 84 101 361 0.0426 Temperate
Arroyo et al 1982 43 64 196 0.0712 Temperate
Arroyo et al 1982 36 25 81 0.09 Temperate

Elberling € Olesen 1999 24 118 242 0.0855 Arctic
FElberling € Olesen 1999 31 76 456 0.1935 Arctic
Hocking 1968 29 81 179 0.0762 Arctic
Kakutani et al 1990 113 315 772 0.0217 Temperate
Kato & Miura 1996 64 187 430 0.0359 Temperate
Kato et al 1990 91 679 1193 0.0193 Temperate
Kato et al 1993 90 356 865 0.027 Temperate
Kevan 1970 20 91 190 0.1044 Arctic
McMullen 1993 10 22 27 0.1227 Tropical
Mosquin & Martin 1967 11 18 38 0.1919 Arctic
Percival 197/ 61 36 178 0.0811 Tropical
Primack 1983 49 118 346 0.0598 Temperate
Primack 1983 41 139 374 0.0656 Temperate
Primack 1983 18 60 120 0.1111 Temperate
Petanidou 1991 131 666 2931 0.0336 Mediterranean
Ramirez 1989 A7 46 151 0.0698 Tropical
Schemske et al 1978 7 33 65 0.2814 Temperate
Herrera 1988 26 179 412 0.0885 Mediterranean

Olesen unp. 10 12 30 0.25 Tropical

Olesen unp. 10 40 72 0.18 Temperate

Olesen unp. 8 42 79 0.2351 Temperate

Olesen unp. 29 55 145 0.0909 Tropical

Olesen unp. 26 82 248 0.1163 Temperate
Inoue et al 1990 112 840 1872 0.0199 Temperate
Inoue & Pyke 1988 36 81 252 0.0864 Temperate
Eskildsen et al unp. 14 13 52 0.2857 Tropical
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Seed dispersal networks

Network Plants Animals Links Connectivity Latitude
Baird 1980 21 7 50 0.3401 Temperate
Beeheler 1983 31 9 119 0.4265 Tropical
Jordano unp. 25 33 154 0.1867 Mediterranean
Crome 1975 71 7 142 0.2857 Tropical
Frost 1980 16 10 110 0.6875 Subtropical
Guitian 1983 12 7 40 0.4762 Temperate
Jordano unp. 16 17 121 0.4449 Mediterranean
Kantak 1979 5) 27 86 0.637 Tropical
Lambert 1989 25 61 511 0.3351 Tropical
Wheelwright et al. 1984 169 40 666 0.0985 Tropical
Jordano unp. 18 28 129 0.256 Mediterranean
Tutin et al 1997 19 8 75 0.4934 Tropical
Noma 1997 15 8 38 0.31367 Temperate
Sorensen 1981 7 6 22 0.5238 Temperate
Galetti & Pizo 1996 7 18 38 0.3016 Tropical
Galetti & Pizo 1996 35 29 146 0.1438 Tropical
Snow & Snow 1971 50 14 234 0.3343 Tropical
Herrera 1984 14 10 65 0.4643 Mediterranean
Silva et al 2002; unp. 207 110 1120 0.0492 Tropical
Snow & Snow 1988 11 14 47 0.3052 Temperate
Jordano unp. 3 3 6 0.66667 Mediterranean
Jordano unp. 12 4 31 0.64583 Mediterranean
Jordano unp. 8 5 26 0.65 Mediterranean
Jordano unp. 21 6 58 0.4603 Mediterranean
Jordano unp. 11 6 36 0.5455 Mediterranean
Jordano unp. 4 ) 10 0.5 Mediterranean
Jordano unp. 5 4 11 0.55 Mediterranean

For the list of references of Table S1 see ref. 9.
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COMPLEX SYSTEMS

Cooperative network dynamics

George Sugihara and Hao Ye

Nested, or hierarchically arranged, mutualisms allow ecosystems to
support more species than they otherwise would. But in this and other
contexts, the growth of such networks could carry a heavy price.

On page 1018 of this issue, Bascompte and
colleagues (Bastolla et al.)' describe how
they have followed up earlier studies’ of the
mutualistic networks of plants and their animal
pollinators. This new investigation is an
intriguing enquiry into whether the particular
topology of cooperative interactions accommo-
dates greater biodiversity (network size), and it
has potential applications beyond ecology to
the dynamics of social and financial systems.

In the ecological networks under considera-
tion, plants and animals compete for resources
within their respective groups. But they may
obtain mutual pay-offs across groups, in
the form of pollination services and nectar
rewards, that can offset the dynamic limits
to system size determined by competition.
These ‘dual category), or bipartite, coopera-
tive networks exhibit a common architecture
called nestedness’, in which relative specialists
— those species with few cooperative links —
interact only with subsets of species having
greater numbers of cooperative links. This
somewhat abstract hierarchical feature gives
rise to network ‘disassortativity’>’, in which
nodes with few connections (specialists) tend
to be connected to nodes with many connec-
tions (generalists), and vice versa. (Strictly
speaking, nestedness is restricted to bipartite
networks, and disassortativity is a more general
property of node connectivity.) Either way, this
gives the network an overall appearance similar
to that of the Fedwire network operated by the
US Federal Reserve System for interbank pay-
ment transfers’. This network has a dense core
of well-connected large institutions (general-
ists) fringed by a periphery of smaller banks
(specialists).

How does nested mutualism affect the way
systems operate? In a fully connected network
in which all plants cooperate with all animals,
mutualism reduces the effective competition
within each bipartite class: within plants and

within animals. However, in situations in which
not all mutualistic interactions are present,
some cooperative links will serve to decrease
competition (Fig. 1a), whereas others can actu-
ally increase it (Fig. 1b). To clarify the role of
nestedness in reducing the effects of competi-
tion, Bastolla and colleagues' apply a ‘soft mean

b Non-nested
(destabilizing)

a Nested
(stabilizing)

& ®
tN,

@<,

& + + 1 \+ \+

} Y VN N
-—-— — —=F

Individual

plant species === Compaiiiion

Individual

p . <—+—> Direct mutualism
animal species

<----» Indirect effects of mutualism
<-+--» (negative or positive)

Figure 1| Nested mutualism reduces
competition. a, A nested cooperative network’,
in which both the specialist plant P, and the
generalist plant P, interact with the generalist
animal A,. Because both plants share a
mutualism with the generalist animal A,, the
competition between them is reduced. Similarly,
competition between both animals is decreased
by mutualism with generalist plant P,. b, Ina
non-nested network, the specialist animal A,
does not interact cooperatively with a subset

of the species with which the generalist animal
A, interacts. So competition between animals
A, and A, is exacerbated by mutualism with
competing plants. The same principles apply

to competition between P, and P, and between
P, and P, (amplified by their mutualism with
competing animals).

© 2009 Macmillan Publishers Limited. All rights reserved

field’ approximation to the plant-animal inter-
action matrix to derive an analytical expression
for competitive load. They clearly show that
nested mutualism reduces overall competition
for a given number of cooperative interactions,
and so has a potential stabilizing effect.

Thus, whereas competition normally
limits the number of species that can coexist
(as tough competitive markets often tend
towards monopoly), the nested cooperative
models studied here reduce competition and
allow the system to support more species, or
higher biodiversity. This model prediction is
supported by data from 56 plant-animal
mutualistic networks, providing evidence that
real cooperative networks with this structure
attain a larger size than those that are relatively
less nested.

Nestedness is not an isolated property of
plant-animal communities, however, but
appears in various social contexts, including
the organization of the New York garment
industry* and as disassortativity in the topology
of the Fedwire network’. Indeed, it is possible
that the appearance of similar topology among
diverse cooperative networks may be a result of
simple shared assembly rules’.

A common theme among various network
assembly rules’” in ecology (for food webs, for
instance) is the idea of growing the network
along paths of least resistance, with simple con-
straints that minimize competition. This is the
situation in which species join the network in
order of increasing specialization with minimal
competitive resistance’ (Fig. 2). As described by
Bastolla et al.', when a specialist species joins
the community by interacting with a generalist
species, overall competitive load is decreased.
This results in a self-reinforcing nested net-
work, in which existing generalist species gain
more connections as specialist species enter the
system: reduced competition, in turn, attracts
more specialists.

In the case of the New York garment indus-
try*, where cooperation occurs between
two classes of companies — contractors and
manufacturers — the establishment of a new
small contractor (that is, a specialist animal)
is facilitated if that company cooperates with
a large, well-established manufacturer (a gen-
eralist plant). An analogous case may hold for
the payment networks of banks’, where the
network topology is disassortative. Here, dis-
assortativity may arise naturally when banks
seek relationships with each other that are the
most mutually beneficial: for example, small
banks may interact with large banks for secu-
rity, lower liquidity risk and lower servicing
costs, and large banks may interact preferen-
tially with small banks in part because they can
extract a higher premium for services and can
in principle accommodate more risk. Simple
incentive rules can give rise to self-reinforcing
disassortativity.

However, the same hierarchical structure
that promotes biodiversity in plant-animal
mutualistic networks may also increase the risk
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a Assembly with minimal competition

b Assembly with ordered niche values

Large

Medium

Small

--------- Allowed  --eeeees Forbiddenj

Figure 2 | Minimal assembly rules can explain
structure. a, An assembly rule that minimizes
competition by adding specialists along paths

of least resistance'; solid lines denote existing
connections. The left-hand sequence minimizes
competition by adding species 4 to a single

guild of competing species (1 and 3). Because

it is easier for species 4 to join the network as

a specialist, this is a path of least resistance.

In the right-hand ‘forbidden’ sequence, the

new species (3) must compete with two guilds

of species — (4 and 1), (2 and 1) — and is not
entering as a specialist. b, Another common
minimal assembly constraint is a natural
ordering in the resource set’, as might result
from evolution®. The nodes are resources used by
each species (here, seed sizes), and each species
is represented as a line joining two resource
classes. Adding a species that eats small and large
seeds, but ignores middle-sized ones, violates the
niche ordering (a common minimal assembly
constraint)"*”. (Graphic modified from ref. 7.)

of large-scale failures in cooperative networks®.
Mutualism facilitates greater biodiversity. But it
also creates the potential for many contingent
species to go extinct, particularly if large, well-
connected generalists (for example, certain
large banks) disappear.

Moreover, as reported by Bastolla et al.', a
strong mutualistic interaction between two
species (excessively favourable selective terms)
can move the system into a strong mutualis-
tic regime; this will destabilize other weakly
mutualistic species groups whose interaction
strength falls below some threshold. Over time,
only the strong cooperators survive, and the
weakly cooperating species groups go extinct.
This stylized behaviour of simple mutualistic
networks possibly applies to other domains, in
which strong cooperation between two agents
may cause the demise of all other agents — or
where, in less-stylized cases, uneven coopera-
tive subsidy or advantage in global networks
can be dangerous unless the mutually bene-
ficial effects propagate more or less evenly
throughout the network.

As a specific speculative example, consider
the interdependence of the Internet auction

980

site eBay and the payment system PayPal.
PayPal was the dominant method of payment
for eBay auctions when it was bought by eBay in
2002, strengthening cooperative links between
the two companies. Insofar as this simplified
model applies, this duopolistic partnership
would have encouraged the demise of alter-
native competing payment systems, such as
eBay’s Billpoint (phased out after the purchase
of PayPal), CitibanK’s c2it (closed in 2003) and
Yahoo!’s PayDirect (closed in 2004).

Whether Bastolla and colleagues’ model' of
structured cooperation performs the same role
in other domains is intriguing but unclear. In
particular, the extent to which the topology of
cooperative linkages in payment networks —
or more importantly, in networks of balance
sheets — may increase systemic risk in the
financial sector remains an open question’.
Tackling such questions will no doubt require

mutualistic cooperation between researchers
linking different competitive fields. ]
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NEUROSCIENCE

Optical control of reward

David E. Moorman and Gary Aston-Jones

Is it wishful thinking that the behaviour of an organism as complex as a mouse
might be controlled by modulating its intracellular signalling with light?
No: this is just what researchers have achieved with an elegant technique.

Ever since the Italian physician Luigi Galvani
discovered that frogs’ muscles twitch when
stimulated electrically, the integral role of
electricity in the functioning of the nervous
system has seemed clear. But there is also a
growing appreciation that intracellular signal-
ling pathways — which can interact with the
extracellular environment through G proteins
and G-protein-coupled receptors (GPCRs)
— play an essential part in the processing of
information by neurons. Deisseroth and col-
leagues' (Airan et al., page 1025 of this issue)
now describe a powerful technique that allows
intracellular signalling pathways to be control-
led through the activation of GPCRs by light.
Intriguingly, by modulating specific signalling
cascades in this way, the authors can control
behaviour in mice.

Deisseroth and colleagues® had previously
shown that naturally occurring light-activated
ion channels, such as channelrhodopsin-2
(ChR2) and halorhodopsin, could be inte-
grated into neuronal cell membranes to drive
the respective activation or inhibition of
electrical impulses using light. By means of
this and other similar techniques™, neuronal
impulses can be regulated with unprecedented
temporal, spatial and cell-type specificity. In
the latest development, Airan ef al.' have cre-
ated chimaeric GPCR molecules that they call
optoXRs. The extracellular and transmem-
brane portions of optoXRs (opsin) consist of
the light-activated rhodopsin protein, but their

© 2009 Macmillan Publishers Limited. All rights reserved

intracellular components are those of specific
GPCRs. The authors focused on two main
receptors for the neurotransmitters adrenaline
and noradrenaline: the B, receptor, which cou-
ples to G, proteins, and the a,, receptor, which
couples to G proteins. As these two classes of
G protein activate signalling pathways that
are mediated by different effector molecules’,
the authors could control a wide range of
intracellular signalling pathways.

Airan et al. first expressed optoXRs in cell
lines to test the molecules’ basic functional-
ity. Depending on the optoXR expressed, they
observed a robust light-driven increase in the
levels of the cellular signalling molecules cal-
cium, cAMP and Ins(1,4,5)P, — effects that are
associated with activation of the corresponding
native GPCRs. What's more, the levels of increase
were similar to those that occurred after activa-
tion of the native receptors, demonstrating that
optoXRs can potentially regulate intracellular
signalling in a physiologically relevant yet
precise manner via specific G proteins.

The authors next investigated light activation
of optoXRs in brain slices containing neurons
from the nucleus accumbens region. They report
an increase in the levels of phosphorylated
CREB, a protein that functions downstream of
G;- and G;-mediated pathways. So it seems that
even downstream components of these pathways
can be activated by light without the need for
additional cofactors, a requirement that would
have limited this technology’s applicability



